
Diverse Generation from a Single Video
Made Possible

(Supplementary Material)

This is a part of the full supplementary HTML which contains all videos.

1 Implementation Details

All RGB values in the videos are scaled to [−1, 1]. All runs were conducted on
Quadro RTX 8000 GPU.

1.1 Creating the Spatio-Temporal Pyramid

Given a downscaling factor r (where r = (rH , rW , rT )) and a minimal size
mS ,mT , we keep downscaling the input video in all dimensions until it “hits” the
minimal size in the spatial or temporal dimensions. Assume we hit the minimal
spatial dimension first, we keep on downscaling the temporal dimension until
reaching its minimal size, while keeping the spatial dimensions fixed on its min-
imal size (and the opposite goes if we first hit the temporal dimension, keeping
on downscaling the spatial dimensions while keeping the temporal fixed). The
minimal size of the spatial dimensions, mS , is the minimum between both height
and width (namely, no spatial dimension will be smaller than mS).

We use cubic downscaling interpolation for both temporal and sptial dimen-
sions. We tried to use nearest interpolation on the temporal dimension, because
it might make more sense sometimes, but found that in most applications it
performed the same or worse.

1.2 Diverse Generation Technical Details

The input to the coarsest scale is (zN +xN ) ∼ N (xN , σI) where σ is a hyperpa-
rameter, and we use σ ∈ [2, 5]. a good ”thumb rule” for σ is the mean distance
between each patch to its nearest neighbour (other than itself). Downscaling
factor is 0.82 for the spatial dimensions (height and width) and 0.87 for the
temporal dimension. The minimal size of the pyramid is set to 3 frames with
minimal spatial dimension of 15 pixels. We use patch size (3 × 7 × 7), where 3
is in the temporal dimension. We use 5 EM-like iterations in each scale of the
pyramid. When the number of voxels (T ×H ×W ) is larger than 3, 000, 000 we
change the number of EM-like iterations to 1, and the patch-size to (3× 5× 5).
This change reduce runtime without hurting the quality of the results.
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1.3 Video Analogies Technical Details

For all examples we use patch size (3×5×5) and α = 1 (for completeness score).
For all-pairs examples we use downscaling factor is 0.9 for all dimensions. The
minimal size of the pyramid is set to 3 frames with minimal spatial dimension
of 20 pixels. 1 EM-like iterations per scale. For sketch-to-video examples we use
downscaling factor of 0.78 for all dimensions and minimal size is 5 frames and
minimal spatial dimension of 35. 3 EM-like iterations per scale (and 1 for the
last two scales, to save runtime). Runtime per result is about 1 minute.

1.4 PatchMatch Implementation Details

In all applications we use mean-square-error as the distance function between.
In Fig. 1 we show another more detailed comparison between our PatchMatch
implementation and the exhaustive nearest-neighbor search used by GPNN. Our
implementation has time complexity of O(n × d) and O(n) additional memory
(where n is the video size and d is the patch size), compared to GPNN, with
time complexity of O(n2 × d) and memory footprint O(n × d). This is easily
seen in the figure. We use the same propagation and random search steps as in
the original PatchMatch paper [1], using the “jump flood” scheme [3]. In each
PatchMatch iteration we look at 4 neighbors at distance step (with additional
small noise for the exact position of the neighbor, and without) and a random
search. However, we only use 15 PatchMatch iterations per VPNN usage, this is
done by searching for step = 8, 4, 1 5 times.
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Fig. 1: Nearest Neighbor Search Comparison using PatchMatch (in our
method) vs. exhaustive search (used by GPNN [2]). GPNN exceeds GPUmemory
at medium resolution (480p) with the original patch size (3, 7, 7). The dashed
line with smaller patch size (3, 5, 5) is intended to show the quadratic trend with
more data points.
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2 Further Properties

2.1 Importance of patch-size and size of pyramid

Using larger patch-size is equivalent to adding levels to the pyramid (keeping
the down-scale fixed), going to a smaller size in the coarsest level. Both ways
cause patches to ”capture” larger regions from the original input, but smaller
patch-size is preferred due to computation time. The main hyperparameters are
therefore the size of the coarsest level, and the std of the noise. These are more
like ”knobs” that affect the nature of the results.

2.2 Layout-Appearance Tradeoff in Video Analogies

Since we are trying to create a new video whose spatio-temporal layout (mod-
eled with the dynamic structure) taken from one video and its appearance from
another, there’s an inherent tradeoff of which of the two we want to be better
preserved in the result. The dynamic structure is “enforced” by using the auxil-
iary channels in Q and K. Removing these channels would generate a video that
is much more similar in its appearance to S but bears less resemblance to the
spatio-temporal layout of C. We can control this tradeoff by setting an upper
limit in the pyramid from which we stop using the auxiliary channels. In our
results it was best to set the maximal scale at half the pyramid height.

3 Comparison details

Evaluation Set Details. For each input video in HP-VAE-GAN and SinGAN-GIF
datasets we generated the same number of random sample as publicly available
(10 generations for each video in HP-VAE-GAN dataset, and 6 generations for
each video in SinGAN-GIF dataset), and compared their SVFID and diversity.

Quality Comparison to GPNN [2]. We provide further evidence that, other than
the gain in speed (shown in Fig.5 in the paper), using PatchMatch [1] does
not result in loss of quality. We compare to the same image dataset used by Sin-
GAN [4] and GPNN [2] by generating 50 samples for each of the 50 inputs (using
our approach with patch-size=1 in the temporal dimension). In this experiment,
the only difference between us and GPNN [2] is the use of PatchMatch. As seen
in the Table below, the quality of our results (in terms of SIFID [4]) is similar
to GPNN, while keeping similar diversity. This can also be seen visually in the
Figure below (all generated samples are in the supplementary files).

SIFID ↓ Diversity SIFID ↓ Diversity

SinGAN [4] 0.051 0.35 0.085 0.5
GPNN [2] 0.030 0.35 0.077 0.47

Ours 0.026 0.33 0.065 0.47
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Input GPNN [2] Ours SinGAN [4]

Video Diversity Index. The video adaptation of the diversity index (originally
proposed for images by [4]) is: given an input video, the standard deviation of
each video position (3D RGB element in the video, converted to grayscale) is
calculated across all generated samples, and then averaged across all pixels. This
is then divided by the standard deviation of the voxels in the input video.
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